And our approach here is rather straight-forward :
And these 3 [ Quasi Octo-Symmetric Sets ] with 8 elements each are :
| Name of Group | The [ Quasi Quad-Symmetric Sets ] | Axis-of-Rotation Sequencefor the Link | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Forward Link | Reverse Link | ||||||||||||||
| **************** | * | ********* | ********* | ********* | ********* | ********* | ********* | * | **** | **** | **** | * | **** | **** | **** |
| 1st Group of Six | A-V-R-J | B-Q-M-U | C-G-Y-P | D-L-N-Z | E-T-W-K | F-X-H-S | -X | -Y | -Z | -Z | -Y | -X | |||
| 2nd Group of Six | A-H-Z-Q | B-W-S-G | C-N-K-V | D-Y-J-T | E-M-P-X | F-R-U-L | -Y | -Z | -X | -X | -Z | -Y | |||
| 3rd Group of Six | A-P-L-W | B-J-X-N | C-U-T-H | D-S-V-M | E-Z-G-R | F-K-Q-Y | -Z | -X | -Y | -Y | -X | -Z | |||
We shall be now attempt to find-out :
And we shall do so now .
IF :
and
the [ Structural Mapping relation ] of the [ 1st Configuration ] relative to the [ 2nd Configuration ]
THEN :
and

And we can see that the [ Bi-Polar Structural Mapping relation ] above can be deemed to be symmetric ,
And that is to say , that :
and yield the same results .


And a full explanation as to why-this-is-so is to follow , next , immediately below .
Statement One :
And vice versa .
Statement Two :
And as such :
Any way you look at it :
Therefore :
and consequently :
Any way you look at it :
Therefore :
and consequently :
Any way you look at it :
Therefore :
and consequently :
we are now ready to combine the 4-elements [ Quasi Quad-Symmetric sets ] into 8-elements [ Quasi Octo-Symmetric sets ] .
| Name of Group | The [ Quasi Quad-Symmetric Sets ] | Axis-of-Rotation Sequencefor the Link | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Forward Link | Reverse Link | ||||||||||||||
| **************** | * | ********* | ********* | ********* | ********* | ********* | ********* | * | **** | **** | **** | * | **** | **** | **** |
| 1st Group of Six | A-V-R-J | B-Q-M-U | C-G-Y-P | D-L-N-Z | E-T-W-K | F-X-H-S | -X | -Y | -Z | -Z | -Y | -X | |||
| 2nd Group of Six | A-H-Z-Q | B-W-S-G | C-N-K-V | D-Y-J-T | E-M-P-X | F-R-U-L | -Y | -Z | -X | -X | -Z | -Y | |||
| 3rd Group of Six | A-P-L-W | B-J-X-N | C-U-T-H | D-S-V-M | E-Z-G-R | F-K-Q-Y | -Z | -X | -Y | -Y | -X | -Z | |||
Let us now apply each of the 3 [ pairing-scheme for A-B-C-D-E-F ] we have above , one-at-a-time :
| Row | The [ Quasi Octo-Symmetric Sets ] | Axis-of-Rotation Sequencefor the linklinking the [ QuasiQuad-Symmetric sets ] | Axis-of-Rotation Sequencefor the [ Bi-Polar Link ]prevailing for the row | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Forward Link | ReverseLink | 1stOption | 2ndOption | ||||||||||||||||
| **** | ***************** | ***************** | ***************** | * | *** | *** | *** | * | *** | *** | *** | * | *** | *** | *** | * | *** | *** | *** |
| 1st | A-V-R-J-D-L-N-Z | B-Q-M-U-F-X-H-S | C-G-Y-P-E-T-W-K | -X | -Y | -Z | -Z | -Y | -X | -Z | -X | -Z | -X | -Z | -X | ||||
| 2nd | A-V-R-J-E-T-W-K | B-Q-M-U-D-L-N-Z | C-G-Y-P-F-X-H-S | -X | -Y | -Z | -Z | -Y | -X | -Y | -Z | -Y | -Z | -Y | -Z | ||||
| 3rd | A-V-R-J-F-X-H-S | B-Q-M-U-E-T-W-K | C-G-Y-P-D-L-N-Z | -X | -Y | -Z | -Z | -Y | -X | -X | -Y | -X | -Y | -X | -Y | ||||
| **** | ***************** | ***************** | ***************** | * | *** | *** | *** | * | *** | *** | *** | * | *** | *** | *** | * | *** | *** | *** |
| 4th | A-H-Z-Q-D-Y-J-T | B-W-S-G-F-R-U-L | C-N-K-V-E-M-P-X | -Y | -Z | -X | -X | -Z | -Y | -Z | -X | -Z | -X | -Z | -X | ||||
| 5th | A-H-Z-Q-E-M-P-X | B-W-S-G-D-Y-J-T | C-N-K-V-F-R-U-L | -Y | -Z | -X | -X | -Z | -Y | -Y | -Z | -Y | -Z | -Y | -Z | ||||
| 6th | A-H-Z-Q-F-R-U-L | B-W-S-G-E-M-P-X | C-N-K-V-D-Y-J-T | -Y | -Z | -X | -X | -Z | -Y | -X | -Y | -X | -Y | -X | -Y | ||||
| **** | ***************** | ***************** | ***************** | * | *** | *** | *** | * | *** | *** | *** | * | *** | *** | *** | * | *** | *** | *** |
| 7th | A-P-L-W-D-S-V-M | B-J-X-N-F-K-Q-Y | C-U-T-H-E-Z-G-R | -Z | -X | -Y | -Y | -X | -Z | -Z | -X | -Z | -X | -Z | -X | ||||
| 8th | A-P-L-W-E-Z-G-R | B-J-X-N-D-S-V-M | C-U-T-H-F-K-Q-Y | -Z | -X | -Y | -Y | -X | -Z | -Y | -Z | -Y | -Z | -Y | -Z | ||||
| 9th | A-P-L-W-F-K-Q-Y | B-J-X-N-E-Z-G-R | C-U-T-H-D-S-V-M | -Z | -X | -Y | -Y | -X | -Z | -X | -Y | -X | -Y | -X | -Y | ||||

We can then bring-in again the [ 12-elements loops ] associated with these 2 [ Quasi Quad-Symmetric Sets ] ,

And the 12 links missing here are then made-up-of :

Several observations here :

Let us now rotate the { [ 12-elements loop ] at the bottom } thru [ an angle of 180 degrees ] ,
We then fill in the 4 single { 2-notch [ -Y Axis rotation ] }'s :
And , upon using this [ single 2-notch rotation ] link as the [ Bi-Polar Link ] for the entire [ 1st row ] ,
