Structure of the Multiplication Table for [ Modulo P ]

by Frank Charles Fung ( 1st published in June , 2006 )

Top Of Page

Section IV : { Modulo 1103 }

Topic #1Introduction & Summary for the Section
Topic #2Setting up the value [ Q ]
Topic #3Setting up the { Core Elements }
Topic #4The { Multiplication Table } for [ modulo 1103 ]
Topic #5A Closer Look at the { Multiplication Table }
Topic #6Re-cap for [ modulo 1103 ]

Topic #1 --- Introduction & Summary for the Section :

In the Section , we shall construct a { Multiplication Table } for [ modulo 1103 ] ,

go to Top Of Page

Topic #2 --- Setting up the value [ Q ] :

For the { prime number } [ P ] being equal to [ 1,103 ] , we set up the corresponding value [ Q ] such that :

And we can write :

go to Top Of Page

Topic #3 --- Setting up the { Core Elements } :

We can then set-up the { core elements } for building the { Multiplication Table } for [ modulo 1103 ] , as follows :

go to Top Of Page

Topic #4 --- The { Multiplication Table } for [ modulo 1103 ] :

We can then construct the { Multiplication Table } for [ modulo 1103 ] as follows :

MULTIPLICATION TABLE : ( 19 rows x 29 columns )
1 2416256459864 787586363512733128942 55227669349471138293 918321024726945698781
1 1 2416256459864 787586363512733128942 55227669349471138293 918321024726945698781
17 17 34682721043821361088 143356569833281073572 56028070418286140569 16454486320963283641
289 289 5785321283291106848 22559512216661593900 69634887488450174849 582424332244664976697
796 796 489978603824271853206 105199010655451084412895 398199877951999651495 542103109010271077799687
494 494 988873183722631643732 522498636341318361985 2476759963381044889249 159366682169261676867
273 273 546109210593996681081927 86943932798466751167 68834486419635172573 2331015493761986838334
628 628 153306121833369612484 92709746563373968368 314157315778184630906 7382422338946453736
613 613 123246984302102492627 420743816604408151577 8584293831058840766923 204865105529210101351
749 749 395790954925758477507 46110235497478261014741 92646394310939227831063 41380539110987821083379
677 677 2515029051418001004311 50745885282994622200 890445387231100774924 49770756466725462400
584 584 6513052059927260977 76029421695108851834 29214658886441773147 541040190432380625565
229 229 458916355165326729317 434731402330201634633 666333359505868718917 6527106608042171010163
600 600 97194776283753388898 116846509566806693464 30015058993323275423 40344929101858763928
422 422 844585134104167367536 1112209729794861072444 211657440579222880110 24326885584160755888
501 501 100290129530853569977 5161889716161037154961 802401376575103275294 107059012983925847819
620 620 137274109699165481075 41443348879241047553 310155866192828629768 121089655962073843
556 556 918724941136288 784431108298541576930 2781398621019465621767 8221441961061392935757
296 296 59281324772195162193 219285457441780386876 1487457072543837694 390648882914661347649
479 479 9588131046191364523875 85053270638235364791 79194710646185971025266 728989764309425133182
**** **** **************************** **************************** **************************** ****************************

A quick explanation here on this [ 19 rows x 29 columns ] { Multiplication Table } :

The [ 19 x 29 ] { Multiplication Table } is therefore split into four (4) separate sections :

And we shall take note here of a very important feature for this [ 19 x 29 ] { Multiplication Table } :

go to Top Of Page

Topic #5 --- A Closer Look at the { Multiplication Table } :

Let us now take a closer look at this [ 18 x 28 ] { orange-color } area .

And let us now arbitrarily pick a { number } here and do a { keep on 'squaring' } operation to see if it arrives back at the same { number } :

MULTIPLICATION TABLE : ( 19 rows x 29 columns )
1 2416256459864 787586363512733128942 55227669349471138293 918321024726945698781
1 1 2416256459864 787586363512733128942 55227669349471138293 918321024726945698781
17 17 34682721043821361088 143356569833281073572 56028070418286140569 16454486320963283641
289 289 5785321283291106848 22559512216661593900 69634887488450174849 582424332244664976697
796 796 489978603824271853206 105199010655451084412895 398199877951999651495 542103109010271077799687
494 494 988873183722631643732 522498636341318361985 2476759963381044889249 159366682169261676867
273 273 546109210593996681081927 86943932798466751167 68834486419635172573 2331015493761986838334
628 628 153306121833369612484 92709746563373968368 314157315778184630906 7382422338946453736
613 613 123246984302102492627 420743816604408151577 8584293831058840766923 204865105529210101351
749 749 395790954925758477507 46110235497478261014741 92646394310939227831063 41380539110987821083379
677 677 2515029051418001004311 50745885282994622200 890445387231100774924 49770756466725462400
584 584 6513052059927260977 76029421695108851834 29214658886441773147 541040190432380625565
229 229 458916355165326729317 434731402330201634633 666333359505868718917 6527106608042171010163
600 600 97194776283753388898 116846509566806693464 30015058993323275423 40344929101858763928
422 422 844585134104167367536 1112209729794861072444 211657440579222880110 24326885584160755888
501 501 100290129530853569977 5161889716161037154961 802401376575103275294 107059012983925847819
620 620 137274109699165481075 41443348879241047553 310155866192828629768 121089655962073843
556 556 918724941136288 784431108298541576930 2781398621019465621767 8221441961061392935757
296 296 59281324772195162193 219285457441780386876 1487457072543837694 390648882914661347649
479 479 9588131046191364523875 85053270638235364791 79194710646185971025266 728989764309425133182
**** **** **************************** **************************** **************************** ****************************

And we see here that when we 'square' the number [ 604 mod 1103 ] , we move diagonally 'forward' to the number [ 826 mod 1103 ] .

Let us now try to understand why this is so :

Thus , 'squaring' any of the 504 { numbers } in this [ 18 x 28 ] { orange-color area } will move us 'forward' in a diagonal direction .

And { keep-on 'squaring' } 28 times will move us , from the original [ 604 mod 1103 ] , to [ 441 mod 1103 ] as marked-off in { white-color } in the { Multiplication Table } above ,

Let us now repeat this [ { keep-on-squaring } 28 times ] operation another eight (8) rounds to arrive back at the number [ 604 mod 1103 ] ,

MULTIPLICATION TABLE : ( 19 rows x 29 columns )
1 2416256459864 787586363512733128942 55227669349471138293 918321024726945698781
1 1 2416256459864 787586363512733128942 55227669349471138293 918321024726945698781
17 17 34682721043821361088 143356569833281073572 56028070418286140569 16454486320963283641
289 289 5785321283291106848 22559512216661593900 69634887488450174849 582424332244664976697
796 796 489978603824271853206 105199010655451084412895 398199877951999651495 542103109010271077799687
494 494 988873183722631643732 522498636341318361985 2476759963381044889249 159366682169261676867
273 273 546109210593996681081927 86943932798466751167 68834486419635172573 2331015493761986838334
628 628 153306121833369612484 92709746563373968368 314157315778184630906 7382422338946453736
613 613 123246984302102492627 420743816604408151577 8584293831058840766923 204865105529210101351
749 749 395790954925758477507 46110235497478261014741 92646394310939227831063 41380539110987821083379
677 677 2515029051418001004311 50745885282994622200 890445387231100774924 49770756466725462400
584 584 6513052059927260977 76029421695108851834 29214658886441773147 541040190432380625565
229 229 458916355165326729317 434731402330201634633 666333359505868718917 6527106608042171010163
600 600 97194776283753388898 116846509566806693464 30015058993323275423 40344929101858763928
422 422 844585134104167367536 1112209729794861072444 211657440579222880110 24326885584160755888
501 501 100290129530853569977 5161889716161037154961 802401376575103275294 107059012983925847819
620 620 137274109699165481075 41443348879241047553 310155866192828629768 121089655962073843
556 556 918724941136288 784431108298541576930 2781398621019465621767 8221441961061392935757
296 296 59281324772195162193 219285457441780386876 1487457072543837694 390648882914661347649
479 479 9588131046191364523875 85053270638235364791 79194710646185971025266 728989764309425133182
**** **** **************************** **************************** **************************** ****************************

And a summary for the total { 9-rounds operation } is then as follows :

Start-off Position Operation for the current { round } Ending Position
Round #1 604 mod 1103 'squaring' 28 times 441 mod 1103
Round #2 441 mod 1103 'squaring' 28 times 282 mod 1103
Round #3 282 mod 1103 'squaring' 28 times 983 mod 1103
Round #4 983 mod 1103 'squaring' 28 times 330 mod 1103
Round #5 330 mod 1103 'squaring' 28 times 545 mod 1103
Round #6 545 mod 1103 'squaring' 28 times 979 mod 1103
Round #7 979 mod 1103 'squaring' 28 times 798 mod 1103
Round #8 798 mod 1103 'squaring' 28 times 879 mod 1103
Round #9 879 mod 1103 'squaring' 28 times 604 mod 1103

We can then conclude that :

We then have this set of 2 diagrams , being schematic representations of the 2 { RING's OF 252 } :

And we note here that the { mutiplicative conjugate pair } [ 604 , 1061 ] are now on 2 separate { RING's } .

But let us also understand why :

This is because :

go to Top Of Page

Topic #6 --- Re-cap for [ modulo 1103 ] :

We have , in this Section , constructed a { Multiplication Table } of { 551 elements } for [ modulo 1103 ] , using the { core elements } :

And we simply note here that the other { 551 elements } , which would then make-up the full field of { 1,102 elements } ,

Thus , the entire field of { 1,102 elements } have been characterized .

Let us now move-on to [ modulo 3361 ] .

go to Top Of Page

go to the next section : Section V --- { Modulo 3361 }

go to the last section : Section III --- { Pyramids } & { RING's }

return to the HomePage for { Structure of the Multiplication Table for [ modulo P ] }

Original dated 2006-6-25